rnalysis.filtering.CountFilter.fold_changeο
- CountFilter.fold_change(numerator: ColumnNames, denominator: ColumnNames, numer_name: str = 'default', denom_name: str = 'default') FoldChangeFilter ο
Calculate the fold change between the numerator condition and the denominator condition, and return it as a FoldChangeFilter object.
- Parameters:
numerator (str, or list of strs) β the CountFilter columns to be used as the numerator. If multiple arguments are given in a list, they will be averaged.
denominator (str, or list of strs) β the CountFilter columns to be used as the denominator. If multiple arguments are given in a list, they will be averaged.
numer_name (str or 'default') β name to give the numerator condition. If βdefaultβ, the name will be generarated automatically from the names of numerator columns.
denom_name (str or 'default') β name to give the denominator condition. If βdefaultβ, the name will be generarated automatically from the names of denominator columns.
- Return type:
- Returns:
A new instance of FoldChangeFilter
- Examples:
>>> from rnalysis import filtering >>> c = filtering.CountFilter('tests/test_files/counted_fold_change.csv') >>> # calculate the fold change of mean(cond1_rep1,cond1_rep2)/mean(cond2_rep1,cond_2rep2) >>> f = c.fold_change(['cond1_rep1','cond1_rep2'],['cond2_rep1','cond2_rep2']) >>> f.numerator "Mean of ['cond1_rep1', 'cond1_rep2']" >>> f.denominator "Mean of ['cond2_rep1', 'cond2_rep2']" >>> type(f) rnalysis.filtering.FoldChangeFilter